If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-90x=81=0
We move all terms to the left:
25x^2-90x-(81)=0
a = 25; b = -90; c = -81;
Δ = b2-4ac
Δ = -902-4·25·(-81)
Δ = 16200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16200}=\sqrt{8100*2}=\sqrt{8100}*\sqrt{2}=90\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-90\sqrt{2}}{2*25}=\frac{90-90\sqrt{2}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+90\sqrt{2}}{2*25}=\frac{90+90\sqrt{2}}{50} $
| 5-3(x-1)=8-2x | | 4-2(x+2)=-2x | | 2x+3/4=4 | | 5+3(x-1)=3x-8 | | 2y^2=-40 | | (2n+6)^2-(n-2)^2=200 | | 1/8(3x-2)=1/3(2x+1) | | 16x-(6x-3)=73 | | 6(c−87)=48 | | 6x-(3x+4)=17 | | 6x+5=6x+6 | | y^2+12=7 | | 4(y-7)-1=-3(-8y+9)-2y | | 7x-0=7 | | j4+ 4= 8 | | j/4+ 4= 8 | | 65=15+5d/12 | | -2(3w-2)+6w=6+4(3w-5) | | 7(0)+6y=-21 | | 3 = w−716 | | ((X^2)/5)2x=1 | | 4x+3=3x+32 | | m+1/3m=4 | | 108+12y=96 | | 9-3(n+5)=12 | | 65=15+(5d/12) | | 2(w-1)=2w+4-3(-5w-1) | | 9+4x-1=5x+24-3x | | -2(x+5)=-2(9x-1)+x | | 1/4b=3/4 | | c=5/9(253F-32) | | 12/n=7 |